Giant Viruses May Have Played Important Role in Evolution of Life

Dr. Albert Erives, a biologist at the University of Iowa, has identified a virus family whose set of genes is similar to that of eukaryotes, an organism classification that includes all plants and animals. The finding is important because it helps clarify how eukaryotes evolved after branching from prokaryotes (single-celled organisms) about two billion years ago.

Marseilleviridae particles; arrows indicate ‘large dense bodies.’ Image credit: Okamoto et al, doi: 10.1101/139097.

Marseilleviridae particles; arrows indicate ‘large dense bodies.’ Image credit: Okamoto et al, doi: 10.1101/139097.

“It’s exciting and significant to find a living family of giant viruses with eukaryote-specific genes in a form that predates the latest common ancestor of all eukaryotes,” said Dr. Erives, the sole author of a paper published in the journal Epigenetics Chromatin.

“These viruses are like time machines that tell us more about how life on our planet came to be.”

He analyzed the genome of a virus family called Marseilleviridae and found it shares a similar set of genes, called core histones, with eukaryotes.

That places Marseilleviridae, and perhaps its viral relatives, somewhere along eukaryotes’ evolutionary journey.

“We now know that eukaryotes are more closely related to viruses, and the reason is because they share core histones, which are fundamental to eukaryotes,” Dr. Erives said.

Core histones are packagers, like professional gift-wrappers. They’re proteins that, in humans, coil DNA in the chromosomes so vital genetic information is compact and protected.

Prokaryotes don’t have core histones, so somehow, somewhere, eukaryotes picked them up. Viruses like Marseilleviridae may have been the source.

“An alternative and equally fascinating explanation is that an ancestor of the Marseilleviridae picked up this gene from a proto-eukaryotic organism, an intermediate between prokaryotes and eukaryotes,” Dr. Erives said.

As the scientist analyzed Marseilleviridae genomes in data provided by the National Institutes of Health, he noticed these viruses encode the eukaryotic core histones H2B-H2A and H3-H4.

Unlike eukaryotes, however, these Marseilleviridae core histones are primitively fused as dimer proteins.

“So, when I saw this, it was wild. No one has ever seen a virus with histones,” Dr. Erives said.

“Moreover, I realized Marseilleviridae did not get these genes from any one eukaryotic lineage living, but rather from some ancestor who was proto-eukaryotic — that is, on its way to becoming a eukaryote.”

“Until now, no ‘organism’ was known to have core histone genes besides eukaryotic cells.”

The discovery begs a larger question about the role giant viruses have played in the evolution of all life on Earth.

Dr. Erives likens giant viruses to vines spreading out into the cellular tree of life — sampling here, borrowing there, and sharing genetic material among the branches of Archaea, bacteria, and eukaryotes.

“Giant viruses have genes that no one has seen before,” he said.

“They’re conserved. They’ve been using them for something, and for a very long time. Why not use them now to peer into the past?”

_____

Albert J. Erives. 2017. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance. Epigenetics Chromatin 10 (55); doi: 10.1186/s13072-017-0162-0

About Skype

Check Also

, Google Bard AI With a Google Search, #Bizwhiznetwork.com Innovation ΛI

Google Bard AI With a Google Search

Google wasted no time releasing its Bard AI chatbot in early 2023 following the reveal …

Leave a Reply

Your email address will not be published. Required fields are marked *

Bizwhiznetwork Consultation